
Hello, World! in C

Johann ’Myrkraverk’ Oskarsson

October 23, 2018

Contents

1 The Quintessential Example Program 1

I Printing Text 2

II The Main Function 3

III The Header Files 4

IV Compiling and Running the Program 5

1 The Quintessential Example Program

This is Hello, World! An example program for testing the compiler and run time
system of the C programming language. It is often the first program people try
out. It’s main purpose is to teach people how to use the compiler and linker
(often the same program) of their choice.

This is in order to get people familiar with the tools of the trade. Many
newcomers don’t differentiate between their text editor, compiler and the pro-
gramming language when they start with an integrated development environment
or IDE.

The programming language is the text written on screen, or paper for that
matter. And this is what the compiler will read in order to create the executable
program. The environment used to create this text is immaterial to the pro-
gramming language and can be switched at will. Here, the focus is on what each
part of the program does, why it is the way it is, and what every part means.

1

Part I

Printing Text
The first thing we cover here, is how C prints text to standard output. Standard
output is an operating system concept, and refers to the usual text output device
of programs. Because people are used to graphical user interfaces, there is often
no visible place for this. On UNIX, OS X and OpenVMS, this habitually refers
to the terminal being used to run the application. On Windows and OS/21,
this is the command prompt, typically run with CMD.

The C function for printing out text is called printf (). The f stands for
format and the first argument is a format string — something we don’t make
use of here — we just print out the format string as–is.

At the end of the format string we have "\n" which tells the compiler to
include a literal newline into the string. This makes our text, when output by
the resulting program, advance the cursor to the next line.

〈print hello, world 2 〉 ≡2

printf ("Hello, world!\n");

This code is cited in chunk 3.

This code is used in chunk 3.

1Available as ArcaOS at the time of writing

2

Part II

The Main Function
Every C program has a main () function which is the starting point of the
program. What that means is when the program starts, it executes the main ()
function and stops when it reaches the end if. The return value is then returned
to the operating system. What exactly that means depends on the operating
system. In UNIX and OS X terminals this is the $? shell variable, and in
Windows and OS/2, this is the %ERRORLEVEL%.

First we include the header files we need; more on that in the next section.
Then we start the main function. The standard way of defining it is as follows,
it starts with the int return type, then comes the main which is the name of the
function, then the parameters follow, the first one is of type int and habitually
called argc . The unused is a non-standord way to declare to the compiler
we’re not using that variable. The second variable is an array of pointers to
char or an array of strings as C programmers may think of it. The ∗ denotes a
pointer, and the [] denotes an array. This parameter is habitually called argv .

We use unused for both arguments because modern compilers will warn
about unused arguments. For the main () function, the arguments are part of
the runtime environment and we really should include them as–is even though
we don’t use them. There are other and more portable tricks to achieve the
same thing, but we don’t cover them here.

The code that the function executes is included between the open brace, {,
and close brace, }. The first thing we do is to 〈print hello, world 2 〉 and then
we end the function with return 0; which tells the operating system we have
exited successfully.2

〈 include header files 4 〉3

int main (int unused argc , char unused ∗argv [])
{
〈print hello, world 2 〉
return 0;

}

2It’s actually system dependent what successfully means here, but most operating systems
today use the UNIX convention of zero meaning success.

3

Part III

The Header Files
There is only one header file we need for this program, it’s named stdio.h and
includes the declaration3 of the printf () function.

On OS X, this header file will also include a macro definition of unused so
we don’t need to do anything about it.

〈 include header files 4 〉 ≡4

#include <stdio.h>

This code is used in chunk 3.

3We refer to any introductory text on the C programming language for the precise meaning
of declaration

4

Part IV

Compiling and Running the
Program
Clang and GCC. These compilers work on UNIX and compatible systems, in-
cluding OS X where these examples are taken from.

Both compilers support the -Wall and -Wextra command line flags, so we
use them. On OS X, Clang masquerades as GCC so we only include one com-
mand line example here.

gcc −Wall −Wextra −o h e l l o h e l l o . c

If your header files do not define the unused macro, you can put

−D unused= a t t r i b u t e ((unused))

on the command line.
We can now run the executable as follows.

. / h e l l o

OpenWatcom. This compiler works on DOS, Linux, OS/2, and Windows. The
example below was tested on OS/2; we expect the other system to behave very
similarly.

The OpenWatcom compiler doesn’t understand unused so we define it to
be nothing on the command line, and invoke the compile and link utility as
such.

wcl386 −d unused= h e l l o . c

Which gives us a hello.exe file we can run as such.

h e l l o

Visual Studio. In order to compile with Visual Studio on the command line,
it’s best to open up a special command prompt such as the x64 Native Tools
Command Prompt for VS 2017. This can be done from the Windows menu or
the search feature.

The Visual Studio compiler doesn’t understand unused either, so we define
it to the empty string; and invoke the compiler as such.

c l /D unused= h e l l o . c

Which gives us a hello.exe file we can run as such.

h e l l o

5

OpenVMS. VSI C does not understand unused either, so we define it to nothing
and invoke the compiler as such.

cc / d e f i n e=” unused=” h e l l o

And then we link the program with,

l i n k h e l l o

and finally to run the program we do:

run h e l l o

Output. What we should now have on our screen is what follows.

Hel lo , world !

6

Index

unused : 3, 4, 5.
argc : 3.
argv : 3.
main : 3.
printf : 2, 4.

7

List of Refinements

〈 include header files 4 〉 Used in chunk 3.

〈print hello, world 2 〉 Cited in chunk 3. Used in chunk 3.

8

